
 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/20

 1

Authentication
TODO

Elements
ESP/Elements is a server-side render
page environment supporting arbitrary
scripting capability through a
Controller/View arrangement.

The in-page scripting language is provided
by Apache Velocity, a well-known and
industry-standard templating language
which includes complex flow control as
well as the ability to execute Java code.

Support for controllers is supported
through arbitrary Java classes which can
be registered to be run as filters before the
template is executed. They are free to
perform any process they like, and may
communicate with the view by setting up
data in the request.

A standardized request and response
object is also provided by the Elements
environment which both the view and the
controller can interact with. This works
similarly to the request variables which are
passed into a PHP page.

Transaction Processing
System
Overview
ESP/Transaction Processing System
(TPS) is an architectural component of
ESP which provides a transport-agnostic
transaction processing capability to
untrusted clients.

Message Specification
TPS messages are divided into a request
message and a response message. For

each request message there will be a
single response message.

The request message dictates the
contents of the transaction. Both the
request & response messages are broken
down into segments, where each segment
contains either message control
information (such as transaction begin &
end) or operations (such as execute
function).

Every type of message segment has two
common parameters; the operation, which
indicates which type of segment it is, and, a
sequence id. The sequence id is used to
correlate request segments and response
segments.

Segments optionally contain other control
fields which direct the specific behavior of
the segment. For example, the CALLS
segment contains fields containing the
class & function name to call.

The segment may also contain data fields.
The contents of the data fields exist
outside of the TPS protocol specification,
the meaning of which are defined by
individual TPS applications.

Request
Header & Footer
The request message always starts with a
TXNB segment and ends with a TXNE
segment. The purpose of the TEXNE
segment is to indicate to the server that it
has received the entire message.

The TXNB segment contains the identifier
for a partition, which uniquely identifies the
execution context for this transaction.
Transactions cannot span partitions, so all

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/20

 2

segments will be executed in the given
partition.

Variables
The client can allocate up to 64 named
variables in the transaction using the VAR
segment. These variables can be used to
hold primitive values (not objects). The
number of variables in the table is limited to
prevent memory exhaustion by malicious
clients.

The most typical use for the variables is to
hold the ID of objects which are created
during the transaction, since these IDs are
not known ahead of time by the client. The
IDs can then be referenced by subsequent
operations within the transaction.

Values can be moved into a variable from a
preceding result object by using the MOV
segment. Once any segment other than
MOV has executed, the previous contents
of the result object is lost to the transaction
processor, and no data from it can be
referenced elsewhere in the transaction.

Function Calling
There are two forms of function call; a
static call and a dynamic call, represented
by the CALLS and the CALLD segments.

CALLS is the simpler of the two calls, and
invokes a static named function on a given
class. Since the function is static, is it not
required that the client have a particular
object instance in mind.

The function call can also contain an
arbitrary number of primitive arguments,
which are passed in via the data object on
the call. Function calling arguments do not
support complex types, such as objects or
other collections.

As an example, CALLS would typically be
used to create an object, since at that point
the client does not have an ID to an existing
object, since it has not been created yet.

CALLD works similarly to CALLS except it
calls a function on a particular object
instance. This requires the client to know
the ID of the object to call the function on.

The ID could be provided to CALLD either
directly from the client, if it knows about the
ID from some means, or, could be a variable
which was previously allocated with VAR
and loaded with MOV.

Response
Header & Footer
The response message always starts with
a RESB segment and ends with a RESE
segment. The purpose of the RESE
message is to indicate to the client that it
has received the entire response.

Between RESB and RESE, the response
consists of an arbitrary number of other
segments which are correlated with the
segments in the request.

For each segment in the request there will
be at least one segment in the response
which indicates the result of the request
segment. In some cases, a single request
segment can produce multiple response
segments.

The request segment is correlated to the
response segments through the Sequence
ID (SID). The SID can be any value provided
by the client, but must be a unique value for
each request segment.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/20

 3

The suggested convention is to use
incrementing numbers for the SID, for
example, 0, 1, 2, … etc.

Response Segments
Request segments can produce one of
three basic segment types:

The OK response segment indicates that
the correlating request segment operated
properly, but otherwise did not produce
any output.

The ERR response segment indicates that
the correlating request failed, and details
as to the failure are provided within the
segment. An ERR result may or may not
end the transaction at that point; if the ERR
does end the transaction, the next
segment will be RESE.

CALLS and CALLD request segments
which return values will produce, at
minimum, an OBJ segment. This contains
the root level of an object whose primitive
data is contained within the segment
attributes.

For example, if the function call returns an
address object, the data might be
first=John,last=Smith.

If the object contains collections, they are
not contained within the segment. Rather,
they are provided as additional response
segments.

For each collection, a STMB segment will
be provided which indicates the collection
name relative to the preceding object. After
STMB, one or more OBJ segments will be
sent, each object representing one of the
objects in the collection. Once all the

objects have been transmitted, the STME
segment will be sent.

It is possible that a child object itself can
contain a collection. If this is the case, then
a nested STMB and STME pair will be
provided directly after the child object.

Authentication & Authorization
The TPS message specification provides
no facility for authentication; any necessary
authentication must happen on the
transport. For example, HTTP-based
transports can choose to use any of the
many available schemes for authenticating
a HTTP request.

Likewise, the TPS message contains no
native facility for authorization. The TPS
server will perform authorization checks
for transaction segments based on
application-level rules. Applications which
fail transaction processing due to
authorization failures will return
appropriate errors in the transaction
response.

Example Request & Response
Request
The following example request creates a
new application object representing a
person, adds two addresses to it, updates a
value on the object, and then reads it back.

In this example, the request & response
messages are presented in psueud-code.
For actual encoding formats, consult the
specification for the TPS transport the
client & server are communicating with.

TXNB {partition=12345,seq=1}

VAR {name=lastid,seq=2}

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/20

 4

CALLS
{class=lc.example.person,func
=create,seq=3}
{first=John,last=Smith}

MOV {from=id,to=lastid}

CALLD
{class=lc.example.person,func
=addr_add,id=$pid,seq=4}
{type=home,addr1=123 Main St}

CALLD
{class=lc.example.person,func
=addr_add,id=$pid,seq=5}
{type=work,addr1=567 Factory
Ln}

CALLD
{class=lc.example.person,func
t=update,id=$pid,seq=6}
{first=Jon}

CALLD
{class=lc.example.person,
func=query,id=$pid,seq=7}

TXNE {seq=8}

Response
RESB {seq=1}

OK {seq=2}

OBJ {seq=3} {id=12345}

OK {seq=4}

OBJ{seq=5}{id=8000}

OK {seq=6}

OBJ{seq=7,class=lc.example.pe
rson} {first=Jon,last=Smith}

STMB {seq=7,name=addresses}

OBJ{seq=7,class=lc.example.ad
dress} {type=home, 123 Main
St}

OBJ{seq=7,class=lc.example.ad
dress} {type=work,addr1=567
Factory Ln}

STME {seq=7}

RESE {seq=8}

Request Segments
TXNB
Indicates the beginning of a transaction.

• partition: The partition to
execute the transaction in.

• seq: The segment sequence
number.

This segment has no data.

TXNE
Indicates the end of a transaction.

• seq: The segment sequence
number.

This segment has no data.

VAR
Allocate a named variable.

• name: The name of the variable.
• seq: The segment sequence

number.

This segment has no data.

MOV
Set a value into a variable. The variable
most previously has been created with
VAR. There must have been a last-seen
object, and, it must contain the data
attribute specified.

• from: The name of the data
attribute in the last-seen object to
read the value from.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/20

 5

• to: The name of the variable to
write the value to.

This segment has no data.

CALLS
Call a static function on a class. This does
not require having a reference to an object.

• class: The name of the class.
• func: The name of the function.
• seq: The segment sequence

number.

If an argument name is specified with a
dollar sign, such as "$foo", then the value
of the argument specifies a variable name
whose value will be substituted on the call.

The variable must previously have been
created with VAR and populated with
MOV.

CALLD
Call a dynamic function on an object. This
requires having a reference to the object.

• class: The name of the class.
• func: The name of the function.
• id: The object id.
• seq: The segment sequence

number.

The data for the segment consists of
arguments to the function call.

If an argument name is specified with a
dollar sign, such as "$foo", then the value
of the argument specifies a variable name
whose value will be substituted on the call.

The variable must previously have been
created with VAR and populated with MOV.

Response Segments
RESB
Begin a response.

• seq: The segment sequence.

This segment has no data.

RESE
End a response.

• seq: The segment sequence.

This segment has no data.

OBJ
This segment contains key/value pairs for
primitive types.

• seq: The segment sequence.
• class: The class for the object.

The data for the object contains
name/value pairs representing all of the
non-collection object attributes. The values
may be primitive types, as supported by the
particular transport.

STMB
Begin an object stream, representing the
contents of an array collection belonging to
the preceding object. Object streams may
be nested.

• seq: The segment sequence.
• collection: The name of the

collection this stream represents,
relative to the last seen object (the
last OBJ segment).

This segment has no data.

STME
End the current object stream which was
previously started with STMB.

• seq: The segment sequence.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/20

 6

This segment has no data.

TPS Transports
Design Considerations
TPS Messages are designed to be
transport agnostic. That is to say, they can
be sent via any medium; HTTP, message
queues such as Kafka and ActiveMQ, plain-
text files, even email. As a result of this, the
message format should be entirely self-
contained.

A TPS message fundamentally consists of
an operator (MOV, CALLS, etc), a map of
attributes, and aa map of user-data.
Consequently, a TPS message can be
naturally represented in any system which
supports a string and two maps of
primitives.

The entire message specification is
designed to support untrusted clients
making streaming requests. Many of the
message formation characteristics are a
direct result of these requirements.

• Object attributes can only contain
primitives. If they were allowed to
contain collections, they could
become arbitrarily large, which
would impact the memory required
to deserialize them.

By splitting collection objects into
multiple distinct segments, they can
be processed one-at-a-time by the
client & server, using minimal RAM.

• No conditional cases, loops, etc. are
provided. The message format is
not a programming language and is
not intended to be used as such.
Consequently, untrusted clients will
not be able to construct small

messages which produce an
asymmetrically large expense on
the server.

• Variables are supported, but the
server limits variable to containing
primitives, and, the message
specification limits the client to 64
variables.

Austere Environments
For environments which are austere, or
lack complex types, it is possible to
combine everything into a single map. To
do this, you can adopt an approach of
leaving the data attribute names
unchanged, prefixing all the TPS attributes
names with _, and underscoring the
operator twice, such as__.

For example:

{

__: "TXB"

_partition: 12345

}

{

__: "CALLD"

_class: "lc.example.widget"

_func: "do_thing"

first: "John"

last: "Smith"

}

{

__: "TXE"

}

Or, in a JSON minified form:

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/20

 7

[{"__":"TXB","_partition":123
45},{"__":"CALLD","_class":"l
c.example.widget","_func":"do
_thing","first":"John","last"
:"Smith"},{"__":"TXE"}]

Although not necessarily practical
examples, these extreme examples show
the flexibility of the TPS message format
and illustrate how they can be used in
unusual environments while preserving full
fidelity of the information.

OpenAPI
ESP mk22 provides a TPS transport
implemented using the OpenAPI 3.0
specification. This transport is ideal for
web-based clients are interested in using
TypeScript generated clients.

OpenAPI 3.1.0 was not able to be
supported at the time of TPS mk22
development due to lack of support from
the relevant open source projects.i

Access to the OpenAPI endpoint is made
through a single door, which is present at
the well-known URL /tps/mk22/door
although other URLs are possible
depending on the individual server
configuration.

ESP mk22 supports OpenID Connect
(OIDC) authentication flows with foreign

i https://github.com/OpenAPITools/openapi-
generator/issues/9083

Identity Provider (IdP) implementations,
including ADFS, Azure AD, Okta, Google,
etc.

Authentication to the API with OIDC or
other means happens external to the TPS
implementation, as TPS does not have
authentication or authorization defined
within the message format, nor is it
necessary.

For more information on the authentication
subsystem in ESP, see the Authentication
section.

The OpenAPI TPS door receives its
parameters in the request body; HTTP
parameters in the URL or in a posted form
are ignored.

Likewise, the OpenAPI TPS door provides
its response a JSON array.

Although many JSON implementations will
try to serialize & deserialize an entire array
at once, it is possible to read one object at a
time using a JSON streaming parser, and to
create it using a producer.

This is because the opening [can be
consumed, and then the message
segments, each of which are a JSON
object, can be read one at a time, comma
delimited.

	Authentication
	Elements
	Transaction Processing System
	Overview
	Message Specification
	Request
	Header & Footer
	Variables
	Function Calling

	Response
	Header & Footer
	Response Segments

	Authentication & Authorization
	Example Request & Response
	Request
	Response

	Request Segments
	TXNB
	TXNE
	VAR
	MOV
	CALLS
	CALLD

	Response Segments
	RESB
	RESE
	OBJ
	STMB
	STME

	TPS Transports
	Design Considerations
	Austere Environments
	OpenAPI

