
 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 1

Transaction Processing System
Overview
ESP/Transaction Processing System (TPS) is an architectural component of ESP which
provides a transport-agnostic transaction processing capability to untrusted clients.

Message Specification
TPS messages are divided into a request message and a response message. For each
request message there will be a single response message.

The request message dictates the contents of the transaction. Both the request & response
messages are broken down into segments, where each segment contains either message
control information (such as transaction begin & end) or operations (such as execute
function).

Every type of message segment has two common parameters; the operation, which indicates
which type of segment it is, and, a sequence id. The sequence id is used to correlate request
segments and response segments.

Segments optionally contain other control fields which direct the specific behavior of the
segment. For example, the CALLS segment contains fields containing the class & function
name to call.

The segment may also contain data fields. The contents of the data fields exist outside of the
TPS protocol specification, the meaning of which are defined by individual TPS applications.

Request
Header & Footer
The request message always starts with a TXNB segment and ends with a TXNE segment. The
purpose of the TEXNE segment is to indicate to the server that it has received the entire
message.

The TXNB segment contains the identifier for a partition, which uniquely identifies the
execution context for this transaction. Transactions cannot span partitions, so all segments
will be executed in the given partition.

Variables
The client can allocate up to 64 named variables in the transaction using the VAR segment.
These variables can be used to hold primitive values (not objects). The number of variables in
the table is limited to prevent memory exhaustion by malicious clients.

The most typical use for the variables is to hold the ID of objects which are created during the
transaction, since these IDs are not known ahead of time by the client. The IDs can then be
referenced by subsequent operations within the transaction.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 2

Values can be moved into a variable from a preceding result object by using the MOV segment.
Once any segment other than MOV has executed, the previous contents of the result object is
lost to the transaction processor, and no data from it can be referenced elsewhere in the
transaction.

Function Calling
There are two forms of function call; a static call and a dynamic call, represented by the CALLS
and the CALLD segments.

CALLS is the simpler of the two calls, and invokes a static named function on a given class.
Since the function is static, is it not required that the client have a particular object instance in
mind.

The function call can also contain an arbitrary number of primitive arguments, which are
passed in via the data object on the call. Function calling arguments do not support complex
types, such as objects or other collections.

As an example, CALLS would typically be used to create an object, since at that point the client
does not have an ID to an existing object, since it has not been created yet.

CALLD works similarly to CALLS except it calls a function on a particular object instance. This
requires the client to know the ID of the object to call the function on.

The ID could be provided to CALLD either directly from the client, if it knows about the ID from
some means, or, could be a variable which was previously allocated with VAR and loaded with
MOV.

Response
Header & Footer
The response message always starts with a RESB segment and ends with a RESE segment.
The purpose of the RESE message is to indicate to the client that it has received the entire
response.

Between RESB and RESE, the response consists of an arbitrary number of other segments
which are correlated with the segments in the request.

For each segment in the request there will be at least one segment in the response which
indicates the result of the request segment. In some cases, a single request segment can
produce multiple response segments.

The request segment is correlated to the response segments through the Sequence ID (SID).
The SID can be any value provided by the client, but must be a unique value for each request
segment.

The suggested convention is to use incrementing numbers for the SID, for example, 0, 1, 2, …
etc.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 3

Response Segments
Request segments can produce one of three basic segment types:

The OK response segment indicates that the correlating request segment operated properly,
but otherwise did not produce any output.

The ERR response segment indicates that the correlating request failed, and details as to the
failure are provided within the segment. An ERR result may or may not end the transaction at
that point; if the ERR does end the transaction, the next segment will be RESE.

CALLS and CALLD request segments which return values will produce, at minimum, an OBJ
segment. This contains the root level of an object whose primitive data is contained within the
segment attributes.

For example, if the function call returns an address object, the data might be
first=John,last=Smith.

If the object contains collections, they are not contained within the segment. Rather, they are
provided as additional response segments.

For each collection, a STMB segment will be provided which indicates the collection name
relative to the preceding object. After STMB, one or more OBJ segments will be sent, each
object representing one of the objects in the collection. Once all the objects have been
transmitted, the STME segment will be sent.

It is possible that a child object itself can contain a collection. If this is the case, then a nested
STMB and STME pair will be provided directly after the child object.

Authentication & Authorization
The TPS message specification provides no facility for authentication; any necessary
authentication must happen on the transport. For example, HTTP-based transports can
choose to use any of the many available schemes for authenticating a HTTP request.

Likewise, the TPS message contains no native facility for authorization. The TPS server will
perform authorization checks for transaction segments based on application-level rules.
Applications which fail transaction processing due to authorization failures will return
appropriate errors in the transaction response.

Example Request & Response
Request
The following example request creates a new application object representing a person, adds
two addresses to it, updates a value on the object, and then reads it back.

In this example, the request & response messages are presented in psueud-code. For actual
encoding formats, consult the specification for the TPS transport the client & server are
communicating with.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 4

TXNB {partition=12345,seq=1}

VAR {name=lastid,seq=2}

CALLS {class=lc.example.person,func=create,seq=3}
{first=John,last=Smith}

MOV {from=id,to=lastid}

CALLD {class=lc.example.person,func=addr_add,id=$pid,seq=4}
{type=home,addr1=123 Main St}

CALLD {class=lc.example.person,func=addr_add,id=$pid,seq=5}
{type=work,addr1=567 Factory Ln}

CALLD {class=lc.example.person,funct=update,id=$pid,seq=6}
{first=Jon}

CALLD {class=lc.example.person, func=query,id=$pid,seq=7}

TXNE {seq=8}

Response
RESB {seq=1}

OK {seq=2}

OBJ {seq=3} {id=12345}

OK {seq=4}

OBJ{seq=5}{id=8000}

OK {seq=6}

OBJ{seq=7,class=lc.example.person} {first=Jon,last=Smith}

STMB {seq=7,name=addresses}

OBJ{seq=7,class=lc.example.address} {type=home, 123 Main St}

OBJ{seq=7,class=lc.example.address} {type=work,addr1=567 Factory
Ln}

STME {seq=7}

RESE {seq=8}

Request Segments
TXNB
Indicates the beginning of a transaction.

• partition: The partition to execute the transaction in.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 5

• seq: The segment sequence number.

This segment has no data.

TXNE
Indicates the end of a transaction.

• seq: The segment sequence number.

This segment has no data.

VAR
Allocate a named variable.

• name: The name of the variable.
• seq: The segment sequence number.

This segment has no data.

MOV
Set a value into a variable. The variable most previously has been created with VAR. There
must have been a last-seen object, and, it must contain the data attribute specified.

• from: The name of the data attribute in the last-seen object to read the value from.
• to: The name of the variable to write the value to.

This segment has no data.

CALLS
Call a static function on a class. This does not require having a reference to an object.

• class: The name of the class.
• func: The name of the function.
• seq: The segment sequence number.

If an argument name is specified with a dollar sign, such as "$foo", then the value of the
argument specifies a variable name whose value will be substituted on the call.

The variable must previously have been created with VAR and populated with MOV.

CALLD
Call a dynamic function on an object. This requires having a reference to the object.

• class: The name of the class.
• func: The name of the function.
• id: The object id.
• seq: The segment sequence number.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 6

The data for the segment consists of arguments to the function call.

If an argument name is specified with a dollar sign, such as "$foo", then the value of the
argument specifies a variable name whose value will be substituted on the call.

The variable must previously have been created with VAR and populated with MOV.

Response Segments
RESB
Begin a response.

• seq: The segment sequence.

This segment has no data.

RESE
End a response.

• seq: The segment sequence.

This segment has no data.

OBJ
This segment contains key/value pairs for primitive types.

• seq: The segment sequence.
• class: The class for the object.

The data for the object contains name/value pairs representing all of the non-collection object
attributes. The values may be primitive types, as supported by the particular transport.

STMB
Begin an object stream, representing the contents of an array collection belonging to the
preceding object. Object streams may be nested.

• seq: The segment sequence.
• collection: The name of the collection this stream represents, relative to the last

seen object (the last OBJ segment).

This segment has no data.

STME
End the current object stream which was previously started with STMB.

• seq: The segment sequence.

This segment has no data.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 7

TPS Transports
Design Considerations
TPS Messages are designed to be transport agnostic. That is to say, they can be sent via any
medium; HTTP, message queues such as Kafka and ActiveMQ, plain-text files, even email. As
a result of this, the message format should be entirely self-contained.

A TPS message fundamentally consists of an operator (MOV, CALLS, etc), a map of attributes,
and aa map of user-data. Consequently, a TPS message can be naturally represented in any
system which supports a string and two maps of primitives.

The entire message specification is designed to support untrusted clients making streaming
requests. Many of the message formation characteristics are a direct result of these
requirements.

• Object attributes can only contain primitives. If they were allowed to contain
collections, they could become arbitrarily large, which would impact the memory
required to deserialize them.

By splitting collection objects into multiple distinct segments, they can be processed
one-at-a-time by the client & server, using minimal RAM.

• No conditional cases, loops, etc. are provided. The message format is not a
programming language and is not intended to be used as such. Consequently,
untrusted clients will not be able to construct small messages which produce an
asymmetrically large expense on the server.

• Variables are supported, but the server limits variable to containing primitives, and, the
message specification limits the client to 64 variables.

Austere Environments
For environments which are austere, or lack complex types, it is possible to combine
everything into a single map. To do this, you can adopt an approach of leaving the data
attribute names unchanged, prefixing all the TPS attributes names with _, and underscoring
the operator twice, such as__.

For example:

{

__: "TXB"

_partition: 12345

}

{

__: "CALLD"

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 8

_class: "lc.example.widget"

_func: "do_thing"

first: "John"

last: "Smith"

}

{

__: "TXE"

}

Or, in a JSON minified form:

[{"__":"TXB","_partition":12345},{"__":"CALLD","_class":"lc.exam
ple.widget","_func":"do_thing","first":"John","last":"Smith"},{"
__":"TXE"}]

Although not necessarily practical examples, these extreme examples show the flexibility of
the TPS message format and illustrate how they can be used in unusual environments while
preserving full fidelity of the information.

OpenAPI
ESP mk22 provides a reference TPS transport implemented using the OpenAPI 3.0
specification. This transport is ideal for web-based clients are interested in using TypeScript
generated clients, but can be consumed using a wide variety of methodologies.

OpenAPI 3.1.0 was not able to be supported at the time of TPS mk22 development due to lack
of support from the relevant open-source projects.i

Access to the OpenAPI endpoint is made through a single door, which is present at the well-
known URL /tps/mk22/door although other URLs are possible depending on the individual
server configuration. An additional API door supporting OpenAPI 3.1.0 may be made available
in the future.

ESP mk22 supports OpenID Connect (OIDC) authentication flows with foreign Identity
Provider (IdP) implementations, including ADFS, Azure AD, Okta, Google, etc.

Authentication to the API with OIDC or other means happens external to the TPS
implementation, as TPS does not have authentication or authorization defined within the
message format, nor is it necessary.

For more information on the authentication subsystem in ESP, see the Authentication section.

The OpenAPI TPS door receives its parameters in the request body; HTTP parameters in the
URL or in a posted form are ignored.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 9

Likewise, the OpenAPI TPS door provides its response a JSON array.

Although many JSON implementations will try to serialize & deserialize an entire array at once,
it is possible to read one object at a time using a JSON streaming parser, and to create it using
a producer.

This is because the opening [can be consumed, and then the message segments, each of
which are a JSON object, can be read one at a time, comma delimited.

The OpenAPI imeplementation of TPS leverages additionalProperties and discriminators in
order to carry the structural information for the TPS message. The following is an example
transaction request message encoded in an OpenAPI request:

{"partition":"test","_t":"TXNB","seq":"0"}

{"name":"person_id","_t":"VAR","seq":"1"}

{"class":"lc.example.person","func":"create","data":{"last":"Jon
es","first":"Sarah"},"_t":"CALLS","seq":"2"}

{"from":"id","to":"person_id","_t":"MOV","seq":"3"}

{"class":"lc.example.address","func":"create","data":{"$parent_i
d":"person_id","addr1":"123 Main
Street","type":"home"},"_t":"CALLD","seq":"4"}

{"class":"lc.example.address","func":"create","data":{"$parent_i
d":"person_id","addr1":"456 Corporate
Ave","type":"work"},"_t":"CALLD","seq":"5"}

{"_t":"TXNE","seq":"6"}

This example performs the following operations:

1. Creates a new person record and stores the resulting primary key from that new
record into the person_id variable for later use.

2. Creates a new address record, and sets its parent_id attribute to the id of the
previously created person record.

3. Created a second address record, also settings its parent_id to the id of the
previously created person.

The OpenAPI schema is provided here for reference:

openapi: 3.0.0

info:

 version: 22.0.1

 title: ESP/Transaction Processing System

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 10

servers:

 - url: https://esp.leigh-co.com

paths:

 /tps/mk22/door:

 post:

 summary: Submit a message to TPS.

 requestBody:

 content:

 application/json:

 schema:

 type: array

 items:

 anyOf:

 - $ref: '#/components/schemas/TXNB'

 - $ref: '#/components/schemas/TXNE'

 - $ref: '#/components/schemas/CALLD'

 - $ref: '#/components/schemas/CALLS'

 - $ref: '#/components/schemas/VAR'

 - $ref: '#/components/schemas/MOV'

 discriminator:

 propertyName: _t

 responses:

 "200":

 description: OK

 content:

 application/json:

 schema:

 type: array

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 11

 items:

 anyOf:

 - $ref: '#/components/schemas/RESB'

 - $ref: '#/components/schemas/RESE'

 - $ref: '#/components/schemas/OK'

 - $ref: '#/components/schemas/ERR'

 - $ref: '#/components/schemas/OBJ'

 - $ref: '#/components/schemas/STMB'

 - $ref: '#/components/schemas/STME'

 discriminator:

 propertyName: _t

components:

 schemas:

 RequestSegment:

 description: A request segment. Only valid when sent from
the client to the server.

 type: object

 required:

 - _t

 - seq

 properties:

 _t:

 type: string

 seq:

 type: string

 description: The correlation sequence for this request
segment.

 discriminator:

 propertyName: _t

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 12

 TXNB:

 description: A segment indicating the start of a
transaction.

 allOf:

 - $ref: '#/components/schemas/RequestSegment'

 - type: object

 required:

 - partition

 - seq

 properties:

 partition:

 type: string

 description: The partition address to execute the
transaction on.

 TXNE:

 description: A segment indicating the end of a
transaction.

 allOf:

 - $ref: '#/components/schemas/RequestSegment'

 - type: object

 CALLS:

 description: A segment indicating the end of a
transaction.

 allOf:

 - $ref: '#/components/schemas/RequestSegment'

 - type: object

 required:

 - string

 - func

 properties:

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 13

 class:

 type: string

 description: The class to call the function on.

 func:

 type: string

 description: The name of the function to call.

 data:

 type: object

 description: Data

 additionalProperties: true

 CALLD:

 description: A segment indicating the end of a
transaction.

 allOf:

 - $ref: '#/components/schemas/RequestSegment'

 - type: object

 required:

 - class

 - func

 - id

 properties:

 class:

 type: string

 description: The class to call the function on.

 func:

 type: string

 description: The name of the function to call.

 id:

 type: string

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 14

 description: The ID of the object to call the
function on.

 data:

 type: object

 description: Data

 additionalProperties: true

 VAR:

 description: A segment indicating the end of a
transaction.

 allOf:

 - $ref: '#/components/schemas/RequestSegment'

 - type: object

 required:

 - name

 properties:

 name:

 type: string

 description: The name of the variable to
initialize.

 MOV:

 description: A segment indicating the end of a
transaction.

 allOf:

 - $ref: '#/components/schemas/RequestSegment'

 - type: object

 required:

 - from

 - to

 properties:

 from:

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 15

 type: string

 description: The data name to read from the
previous non-MOV segment.

 to:

 type: string

 description: The variable name to write to.

 ResponseSegment:

 description: A response segment. Only valid went sent from
the server to the client.

 type: object

 required:

 - _t

 - seq

 properties:

 _t:

 type: string

 seq:

 type: string

 description: The correlating sequence value for this
response segment.

 discriminator:

 propertyName: _t

 RESB:

 description: A segment indicating the beginning of the
response message.

 allOf:

 - $ref: '#/components/schemas/ResponseSegment'

 - type: object

 RESE:

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 16

 description: A segment indicating the end of the response
message.

 allOf:

 - $ref: '#/components/schemas/ResponseSegment'

 - type: object

 OK:

 description: A segment indicating the correlating request
segment operated properly.

 allOf:

 - $ref: '#/components/schemas/ResponseSegment'

 - type: object

 ERR:

 description: A segment indicating an error with the
correlating request segment.

 allOf:

 - $ref: '#/components/schemas/ResponseSegment'

 - type: object

 required:

 - err_text

 - err_num

 properties:

 err_text:

 type: string

 description: Error text.

 err_num:

 type: string

 description: Error number.

 OBJ:

 description: An object returned by the correlating request
segment.

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 17

 allOf:

 - $ref: '#/components/schemas/ResponseSegment'

 - type: object

 required:

 - class

 properties:

 class:

 type: string

 description: The class for the response object.

 data:

 type: object

 description: Data

 additionalProperties: true

 STMB:

 description: The start of a stream returned by the
correlating request segment.

 allOf:

 - $ref: '#/components/schemas/ResponseSegment'

 - type: object

 required:

 - attribute

 properties:

 attribute:

 type: string

 description: The attribute name for the collection
this stream populates.

 STME:

 description: The end of a stream returned by the
correlating response segment.

 allOf:

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 18

 - $ref: '#/components/schemas/ResponseSegment'

 - type: object

API Design Considerations
There is an element of art to creating an API specification. The more composability is pushed
down to the client, the more the client becomes decoupled from the intentions of the API
designer. The less composability, the more the API designer retains control, but now had the
burden to pre-anticipate every use-case.

It is a common engineering situation to create an API which is not composable enough to be
realistic for the client population, which results in client feature development requiring a lot of
support from back-end engineers in order to extend the API to support new use-cases.

This often results in implementations with parallel or diffuse logic. In situations where the back-
end support is not available, either due to resource problems within an organization or simply
because it's an API being consumed by people outside the organization, it is typical to see
implementations where the clients break transnationality and awkwardly perform a lot of
different API requests – with the attending fragility and performance problems – to create the
desired client functionality.

When creating a good TPS API, the API designer should have a clear view that the object
model is the API, and is not something to be hidden away or jealously reserved. In order for this
to make sense, it also must be clearly understood that the object model is not necessarily
tightly coupled to the physical data model.

For example, just because there is a person object and an address object, does not mean or
require that there is a SQL database with a person table and an address table. API designers
can present a viewpoint of their API through this object model while retaining complete control
to arrange the details of the physical model however they might desire – and changes to that
physical model can be made without breaking the object model.

Objects could easily be served out of a distributed system of heterogenous services, in which
case the TPS object model for the application would provide to the client a consistent view
across a wide variety of systems. In this sort of an application, execution safety can even be
provided using any of several industry accepted distributed transaction protocols.

Very specifically, API designers are strongly cautioned against using an API object model as a
form of object / relational mapping. TPS is not an ORM framework and should not be wielded
as such. While a TPS service implementation could use an ORM framework, it is essential this
be seen as coincidental rather than fundamental. The API should then first and foremost try to
serve the business case for the application rather than any physical implementation reality.

API designers are also encouraged to begin approaching the problem from the perspective of
the client designer, and try not to anticipate too much in terms of the individual use-case of the
client. After all, you can build both a space ship and a house from a pile of Lego bricks. The

 Enhanced Services Platform
 mk22 (GIPSY DANGER) - DRAFT – 2025/2/23

 19

question is only what bricks are the common denominator between the two use-cases – and
those are the classes that the API designer to endeavor to create, so that the client is free to
arrange them into a house or a spaceship or something novel and unforeseen.

i https://github.com/OpenAPITools/openapi-generator/issues/9083

	Transaction Processing System
	Overview
	Message Specification
	Request
	Header & Footer
	Variables
	Function Calling

	Response
	Header & Footer
	Response Segments

	Authentication & Authorization
	Example Request & Response
	Request
	Response

	Request Segments
	TXNB
	TXNE
	VAR
	MOV
	CALLS
	CALLD

	Response Segments
	RESB
	RESE
	OBJ
	STMB
	STME

	TPS Transports
	Design Considerations
	Austere Environments
	OpenAPI
	API Design Considerations

